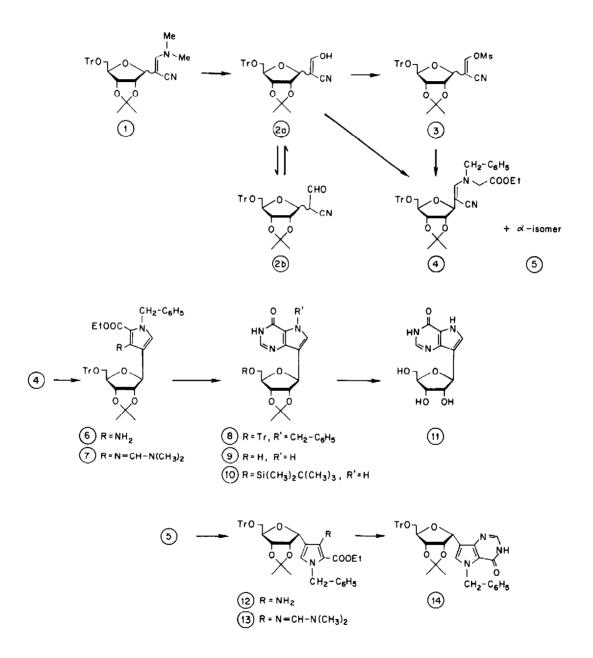
SYNTHESIS OF THE PYRROLO[3,2-d]PYRIMIDINE C-NUCLEOSIDE ISOSTERE OF INOSINE<sup>1</sup>

Mu-Ill Lim, Robert S. Klein<sup>\*</sup> and Jack J. Fox Laboratory of Organic Chemistry, Sloan-Kettering Institute Memorial Sloan-Kettering Cancer Center, New York, N. Y. 10021


<u>ABSTRACT</u>: The synthesis of "9-deazainosine," a new C-nucleoside analog of inosine and of formycin B is described. It involves conversion of a ribosylated 3-amino-2-carboalkoxypyrrole intermediate to the desired pyrrolo[3,2-<u>d</u>]pyrimidine system.

As part of an ongoing program for the design and biological evaluation of novel C-nucleosides of potential biomedical interest, we have recently reported the synthesis of several pyrazolo- $[1,5-\underline{a}]-1,3,5-triazine$  C-nucleosides<sup>2</sup> which are isosteric with common, naturally occurring purine nucleosides. The recently demonstrated antitumor activity of several of these compounds<sup>3</sup> in experimental animals prompted us to undertake the synthesis of the corresponding 5-H-pyrrolo- $[3,2-\underline{d}]$ pyrimidine C-nucleosides. Preliminary model studies<sup>4</sup>,<sup>5</sup> of several approaches to this heterocyclic system which could be applicable also to its C-ribosylated derivative suggested two promising routes: a) hydrogenolytic cleavage of pyrimido $[5,4-\underline{c}]$ pyridazines<sup>4</sup> and b) a two-step conversion of 3-amino-2-carboalkoxypyrroles.<sup>5</sup>

We describe here the synthesis of  $7-(\beta-\underline{D}-ribofuranosyl)-4-oxo-3H,5H-pyrrolo[3,2-d]pyrimidine 11 ("9-deazainosine"), an analog of inosine and of formycin B by an adaptation of approach b).$ A similar pyrrolo[3,2-d]pyrimidine C-nucleoside ("2-deazaoxoformycin") has been already reported.<sup>6</sup>

Our starting material for this synthesis (see Fig. 1) is the versatile 3-dimethylaminoacrylonitrile ] which has been utilized in the preparation of oxazinomycin<sup>7</sup> and of several pyrazolo[1,5-<u>a</u>]-1,3,5-triazine C-nucleosides.<sup>2b</sup> Hydrolysis of ] under mild acidic conditions in a two-phase system ( $CF_3COOH/H_2O/CHCI_3$ , 20<sup>o</sup>, 15 hr) provided the 2-(1-ribofuranosy1)-2-formy1acetonitrile<sup>8</sup> 2 as a mixture of aldehyde/enol tautomers<sup>9</sup> of the  $\alpha$ - and  $\beta$ - C-1' epimers in very good yields. Without further purification, 2 was treated with 1.5 equiv. of N-benzylglycine ethyl ester in benzene at reflux for 8 hr under a water separator to give the desired N-benzylenamines 4 and 5 as a mixture of the  $\beta$ - and  $\alpha$ -isomers, respectively (4:5 - 1:5, 78% yield from ]). These could be readily separated by silica gel column chromatography with benzene-ethyl acetate (10:1) as the eluent.

An alternate procedure which affords the  $\beta$ -isomèr 4 as a major product was finally adopted. Thus, 2-formylacetonitrile 2 was first converted to mesylates 3 (1.1 equiv. methanesulfonyl chloride, 1.2 equiv. Et<sub>3</sub>N or DBN in CHCl<sub>3</sub> at 0<sup>0</sup> for 1 hr) obtained as a mixture of the  $\alpha$ - and  $\beta$ - C-1' epimers ( $\beta:\alpha \sim 10:1$ ). This mixture was treated directly with 1.5 equiv. of N-benzyl-



glycine ethyl ester (Dimethylformamide [DMF],  $80^{\circ}$ , 18 hr) to give the same N-benzylenamines 4 and 5 (4:5 = 3:2) in a 54% overall yield from 1 (with Et<sub>3</sub>N as base catalyst for 2 + 3).

Ring closure of purified  $\beta$ -N-benzylenamine 4 to the desired 3-aminopyrrole 6 (70% yield) was carried out under strongly basic conditions (EtONa in EtOH, 25°, 2 hr). Intermediate 6, in turn, was treated with 5 equiv. of DMF-dineopentyl acetal<sup>10</sup> (DMF, 80°, 24 hr) to afford the 3-dimethylaminomethyleneimine 7 in nearly quantitative yields. Treatment of 7 with saturated methanolic ammonia in a bomb at 80° for 24 hr gave the blocked pyrrolopyrimidine C-nucleoside 8 also in nearly quantitative yield. No epimerization at C-1' was observed during conversions  $4 \rightarrow 6 \rightarrow 7 \rightarrow 8$ . In order to establish the anomeric configuration at that position, the corresponding series of  $\alpha$ -C-nucleosides was also prepared for comparison. By identical procedures, the 2-N-benzylenamine 5 was converted to 12, then 13, and finally to the blocked  $\alpha$ -pyrrolo[3,2-d]pyrimidine C-nucleoside 14.

A comparison of the H<sup>1</sup>-NMR spectra of the corresponding compounds in pairs 6-12, 7-13, and 8-14 (see Table) established conclusively the assignment of the epimeric configuration at C-1'. As with  $\alpha$ - and  $\beta$ -nucleosides,<sup>11</sup> the chemical shifts of the H-1' are consistently further downfield for the  $\alpha$ -isomers (12, 13, and 14) than for the corresponding  $\beta$ -isomers (6, 7, and 8). This relationship has been observed in the cases of the isomers of  $\psi$ -uridine,<sup>12</sup> pyrazomycin<sup>13</sup> and other purine-like C-nucleosides.<sup>2</sup>,<sup>8a</sup>,<sup>14</sup> Furthermore, the  $\beta$  compounds exhibit larger  $\Delta\delta$  numerical values for the difference in chemical shifts of their isopropylidene gem-dimethyl groups than do their  $\alpha$ -isomers.<sup>15</sup>

Debenzylation of 8 with 10 equiv. of sodium naphthylide<sup>16</sup> in THF at  $20^{\circ}$  for 18 hr was accompanied by detritylation to afford the 5H-pyrrolo[3,2-d]pyrimidine C-nucleoside 9 in 57% yield. This compound was further characterized as its 5-tert-butyldimethylsilyl derivative 10 (tert-butyldimethylsilyl chloride 1.1 equiv., Imidazole 2.5 equiv. in DMF). Removal of the isopropylidene group of 9 with 7% HCl/MeOH at  $20^{\circ}$  for 40 min. finally afforded 9-deaza-inosine 11 as its hydrochloride salt in 84% yield (dec. at  $224^{\circ}$ , MeOH-H<sub>2</sub>0).

| 3- Series | $\frac{6}{2}$ (22.3, 4.79), $\frac{7}{2}$ (24.4, 4.91), $\frac{8}{2}$ (21.4, 5.22) |
|-----------|------------------------------------------------------------------------------------|
| x- Series | 12 (18.3, 5.10), 13 (14.0, 5.48), 14 (12.0, 5.53)                                  |

| TABL | Ξ |
|------|---|
|      |   |

The first number in the parentheses represents the  $\Delta\delta$  value of the methyl isopropylidene signals (Hz). The second number represents the chemical shift  $\delta$  of C<u>H</u>-1' (ppm).

## References and Footnotes

- This investigation was supported by funds from the National Cancer Institute, DHEW (Grants CA-08748, 18856 and 24634). It was presented in part at the 178th ACS National Meeting, Washington, D.C., on Sept. 10, 1979, Abstr. Carb. 09.
- a) S. Y-K. Tam, J. S. Hwang, F. D. de las Heras, R. S. Klein and J. J. Fox, J. Heterocycl. Chem., <u>13</u>, 1305 (1976); b) S. Y-K. Tam, R. S. Klein, I. Wempen and J. J. Fox, J. Org. Chem., in press.
- J. H. Burchenal, K. Kalaher, J. Chisholm, R. S. Klein, S. Y-K. Tam and J. J. Fox, 68th Meeting of the Am. Assoc. Cancer Res., Denver, Colo., Abstr. AACR 899 (1977).
- 4. R. S. Klein, M-I. Lim, S. Y-K. Tam and J. J. Fox, J. Org. Chem., 43, 2536 (1978).
- 5. M-I. Lim, R. S. Klein and J. J. Fox, J. Org. Chem., in press.
- C. M. Gupta, A. P. Hope, G. H. Jones and J. G. Moffatt, 175th ACS National Meeting, Anaheim, Calif., 1978, Abstr. Carb. 40.
- 7. S. De Bernardo and M. Weigele, J. Org. Chem., 42, 109 (1977).
- Syntheses of 2 as its sodium enolate has been reported by an alternate procedure:
  a) F. G. de las Heras, C. K. Chu, S. Y-K. Tam, R. S. Klein, K. A. Watanabe and J. J. Fox, J. Heterocycl. Chem., <u>13</u>, 175 (1976); b) C. K. Chu, U. Reichman, K. A. Watanabe and J. J. Fox, J. Fox, J. Org. Chem., <u>42</u>, 711 (1977).
- 9. A similar mixture has been reported in the case of the corresponding 2-formylacetamide.<sup>7</sup>
- 10. Utilization of formamide acetals as formylating agents of carbon and nitrogen has been reviewed recently: R. F. Abdulla and R. S. Brinkmeyer, Tetrahedron, 35, 1675 (1979).
- L. B. Townsend in "Synthetic Procedures in Nucleic Acid Chemistry," Vol. 2, W. W. Zorbach and R. S. Tipson, Eds., Wiley-Interscience, New York (1973), p. 333.
- 12. U. Lerch, M. G. Burdon and J. G. Moffatt, J. Org. Chem., 36, 1507 (1971).
- 13. S. De Bernardo and M. Weigele, J. Org. Chcm., <u>41</u>, 287 (1976).
- 14. T. Huynh-Dinh, A. Kolb, C. Gouyette, J. Igolen and T. D. Son, J. Org. Chem., <u>40</u>, 2825 (1975).
- 15. J. L. Imbach and B. L. Kam, J. Carbohydr. Nucleosides, Nucleotides, 1, 271 (1974).
- 16. K. D. Philips and J. P. Horwitz, J. Org. Chem., <u>40</u>, 1856 (1975).

(Received in USA 26 November 1979)